References

BOND, W. L. (1959). Acta Cryst. 12, 375.

BRAEKKEN, H. (1932). Z. Kristallogr. 83, 222.

- CLARK, G. L. (1955). Applied X-rays, 4th ed. New York: McGraw-Hill.
- DALY, J. J., STEPHENS, F. S. & WHEATLEY, P. J. (1963). Monsanto Research S. A. Final Report No. 52.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.

- SAHL, K. & ZEMANN, J. (1961). Naturwissenschaften 48, 641.
- SWANSON, H. E. & FUYAT, R. K. (1953). N.B.S. circular 539, Vol. II, 45.
- WYCKOFF, R. W. G. (1963). Crystal Structures. 2nd ed. Vol. I, 298. New York: John Wiley.

Acta Cryst. (1969). B25, 800

The Crystal Structure of Copper Mercury Oxynitrate Trihydrate, Cu(NO₃)₂. HgO. 3H₂O

By B. KAMENAR

Laboratory of General and Inorganic Chemistry, Faculty of Science, The University, Zagreb, Yugoslavia

(Received 19 April 1968)

The crystal structure of copper(II) mercury(II) oxynitrate trihydrate has been determined by singlecrystal three-dimensional X-ray analysis. There are two formula units in the monoclinic unit cell of dimensions a=7.33, b=8.87, c=6.75 Å, $\beta=112^{\circ}32'$ and space group $P2_1/c$. The copper ion is coordinated by two oxygen atoms from two nitrate ions at 2.14 Å, two oxygen atoms from two hydroxide ions at 2.15 Å and two oxygen atoms from two water molecules at 2.02 Å in an octahedron. Both hydroxide ions and both water molecules belong simultaneously to the mercury ion, at 2.30 and 2.54 Å respectively, whose octahedral coordination is completed with nitrate-oxygen atoms at 2.78 Å. The octahedra about copper and mercury are linked alternately by sharing two opposite edges along the c axis as well as two opposite corners along the b axis. The solution of the structure shows that the best definition of the chemical formula of this compound is HgCu(OH)₂(NO₃)₂.2H₂O.

Introduction

Among various basic salts there is a large group of those with the general formula $mMX_2.nHgO.xH_2O$ where M=Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn, Cd, Hg, and X=Cl⁻, Br⁻, NO₃⁻, SO₄²⁻, SeO₄²⁻, ClO₃⁻, BrO₃⁻. (André, 1887; Maihle, 1902; Finzi, 1913; Denk & Dewald, 1951; Denk, Leschhorn & Rosmer, 1962; Denk & Leschhorn, 1966). With the exception of mercury oxyhalides, basic mercuric sulphates, chlorate and bromate where M=Hg, the structures of other salts are still unknown (Grdenić, 1965).

We have undertaken the crystal-structure investigation of the basic nitrate $Cu(NO_3)_2$. HgO. $3H_2O$ in order to establish to which structural type it belongs (Basset, 1947). It was particularly interesting to find out the coordination about mercury in the presence of another metal. At the same time, in spite of many solved structures, the stereochemistry of copper still attracts attention. Not of less interest have been also the ligand properties of the nitrate ion, particularly since Wallwork & Addison (1965) proposed its bidentate character in the structure of anhydrous α -copper(II) nitrate.

Experimental

 $(NO_3)_2$ Hg. CuO. 5H₂O is reported to have been obtained by dissolving mercuric oxide in an aqueous so-

lution of cupric nitrate (Maihle, 1902). By the same method $Cu(NO_3)_2$. HgO.3H₂O was prepared in the form of pale blue needle-shaped crystals ((Finzi, 1913). All our attempts to prepare both compounds have always resulted in the trihydrate.

The crystal data are as follows:

$a = 7.33 \pm 0.02$ Å	Formula weight 458.2
$b = 8.87 \pm 0.02$	$V = 405 \cdot 3 \text{ Å}^3$
$c = 6.75 \pm 0.02$	$\varrho_m = 3.74 \text{ g.cm}^{-3}$
$\beta = 112^{\circ}32' \pm 15'$	$\varrho_x = 3.75 \text{ g.cm}^{-3}$
Space group $P2_1/c$	Z=2

The cell parameters were measured from oscillation and Weissenberg photographs. Density was determined pycnometrically. The systematic absence of reflexions h0l for l odd and 0k0 for k odd uniquely determined the space group as $P2_1/c$. Except for some weak reflexions, all hkl reflexions fulfil the condition k+l=2n required by the special positions of the heavy atoms. Three-dimensional intensity data ($h0l \dots h6l$, $hk0 \dots hk6$) were recorded on integrated equi-inclination Weissenberg photographs with multiple films with Cu K α radiation and determined photometrically. Within the limiting sphere 526 independent reflexions were strong enough to be observed. After correction for Lorentz and polarization factors, the intensities were placed on the same relative scale. The crystal was spherically ground to 0.1 mm in diameter and the intensities were corrected for absorption ($\mu r = 2.06$). Calculations were carried out on the Ferranti MERCURY computer at the University of

Table 1. Observed and calculated structure factors The values listed are $50F_o$ and $50F_c$.

h	k	1	Po	P _c	h	k	1	Po	7 _c	h	k	1	2.	¥.c
0	0	2	8061	8868 4935	1	1	-7	1743 2134	1705 2109	1	6	-2 -1	5689 1461	5478 1315
0	1	6	2736	3099 3964			-4-3	1105 4584	42 4670			0 1	4911 1345	5038 928
		2	4488 - 4287	3572 3891			-2 -1	3688 - 4571	-3175 4276			2	5569 3717	4660 3469
		7	1348	1203			1	4330	4203	1	7	-5	1055	1863
0	2	2	7444	6892			3	3278	3006			-1	2885	2515
		45	6461 927	5826			457	3099	2850			3	1547 3554 1182	2417 1958 1490
0	3	6 1	3749 5384	3473 5007	1	2	-å	1913 3566	1904 3450	1	8	-6-4	1161 3140	1833
		23	1391 3975	-995 3348			-5 -4	636 5820	781 5426			-2	3917 3176	3556 3066
		45	1179 2483	778 2285			-2	6951 8717	6636 9932			2	3345 2134	2918 2469
0	4	0	6306	14 34 5784			2	1220 8988	8392	1	9	-3	836 1312	1120
		2	8375	7550			4	6018	945 4951 2680			1	1426	1554
0	5	6	2967 3019	2740	1	3	-7	1426	1414	1	10	-4	1482	1888
	·	23	1374 2626	596 2653			-3 -2	3868 1189	3458 -793			02	2415 2138	2697 2165
		5	2010 1153	2077 1316			-1 0	5466 2765	4666 2271	1	11	-1	947 870	1287 1422
0	ь	1	5155	392			3	4368 3658	3854 2992	2	0	-8	1827 2963	2111 3792
		44	3916	3511			5	2075	1770			-4	4955 5797	6074 6496
0	7	1	2584	3117	1	4	-6	3354	3162			2	9646	10078
		3	2670 1234	2067 1328			-3 -2	1253 8115	588 7694	2	1	-6 -7	2201	2289
0	8	0 2	4421 3918	4 398 3475			-1	1629 8122	-281 8492	-	1	-5	2066	2215 3920
o	9	4	2328 1340	2315 1740			12	798 7268	-611 6517			-2 -1	1395 4323	-972 4267
~	10	350	1565 511	1408			6	4911 2297	4142			0	2388 4550	2186 4318
0	10	2	2313	2246	1	2	-5	2197	2276			4	1348	-809
ĭ	ô	-8-	1306 3544	1648 3632			-2 -1	1177	598 2881	,	2	7	788	944 1843
		-4 -2	7423 6704	8612 9083			12	3355 1397	3278 562	•	•	24	3432	3398
		2	7055 6953	9324 6325			3	3121 1517	2927 1207			-3	1122 8062	1297 8397
		4 6	3965	3742	1	6	-6	2248 3936	2414 3526			-1 0	883 8084	591 8884
			_	_				-	8		Ŀ	,	9	P
h	k	1	P.0	F _C	n n	×.	-2	^г о 8666	°c 9927	2	а А	_	50 2983	fc 2809
٢	2	24	7591 4746	6789 3827	1	Ŭ	02	5548 4957	5918 5228		Ū	-20	3879 3231	3965 3502
2	3	-7	2408 1580	2447 1431			4	2782 1365	2994 1851			24	2239 1184	2307 1609
		-5	2653 1337	2600 589	3	1	-7	1931 2264	2582	3	9	-3	820 1381	1154
		-1	3748 4039 2686	3781			-3	2943	3086			1	1534	1536
		12	2908	3147			-1	4408 1892	4702 	3	10	-ź	1723	2204 1868
		35	2866 1816	2513 1844			13	3614 2590	37 39 2082	4	0	-8	523 2080	1825 2065
2	4	-6	3332 5647	3296 5212	3	2	: -ģ	1379	1533			94	3309 4469	3680 4721
		-2	6322	6542			147	5565	5795			-2	56 32 4286	5754
		4	4489	4152			-2	7117 1485	7398	4	1	-7	2953	3614
2	5	-7	981 2231	954 2198			0	6600 6734	6797 6088		-	-5	2644 1085	3088 380
		-3	2581 1217	2586 -613			6	4251	3851			-2	2978 1037	3108 -16
		-1	2949	2963	ر	•	-5	2476	2342			-1	2623	2692
2	6	5	1251	1428			-2 -1	1048 2923	-750 2729			3	1738	2321
-	Ŭ	-4	4103 5352	3753 5151			13	2615 2498	2687 2291	4	2	-á	2159 3181	1996 3283
		-1 0	1144 5428	1565 5393	3		4 -ģ	1398	1497			42	4760 6799	4771 6805
		4	3005	2888			P 4 2	4963	4617			1	1212	638
-		-3	1871	2050			02	6448 5576	6587 5042	4	3	4	3231	2885
		1	21 38 21 84	2009			46	3279 928	3032 1463	-		-5	2109 2768	1995 2558
2	e 6	5 -6	731 1599	995 2023	3		5 -7 -5	1099	1211 2191			-1	279 7 2749	2724 2588
		49	2777 3198	2472 3169			-3	3197	2826			35	1604	1551 1169
		2	3553	3665			1	2690	2788	4	4	99	2870	2841
4	2 9	-5	1014	1037	,		ر مــــــــــــــــــــــــــــــــــــ	1126	1462 2729			-20	5729	5486
		-1	2169 1525	1692 1933			42	3801 4720	3950 4452			24	3830 1983	3380 1893
	2 10) _2	1096 2305	1466 2525			2	4717	4848 3261	4	5	-7	1240 1745	1495 1584
		2	2070	2143 1831	3	3	7 -4	2402	2654 1538 1649			-1	2704	2646
	5 1	5 -8	2072	2018			-1	2601	2037		¢	į	1488	1421
		-0	4916	5736			- 1	1047	1375	4	0	-4	3660	3691

h	k	1	P.,	Ρ.	h	k.	1	л (с Р.	P.	h	k	1	P.,	P.,
4	6	-2	4004	3691	5	6	-6	2154	2298	7	0	٥	3150	3092
1	·	õ	4257	4301		Č	-4	3710	3389	Ż	ĩ	-į	1216	1400
		4	1429	1994			-6	3446	3368			-3	1971	1900
4	7	-5	1478	1464	c	7	2	2236	2548			-1	1607	1478
		-í	1914	1620	2	1	-3	1866	1472	7	2	-6	2877	2178
		3	1460	1389			-1	1044	1292			-4	2909	2593
4	8	-4	2715	2855	5	8	-2	2383	2766			ō	2805	2518
		-6	2675	2869			2	1001	1845	7	3	-7	991	1077
		2	1813	2186	2	9	-3	1179	1093			-5	1455	1507
•	,	-í	1369	1450	0	0	-6	2430	2787			-í	2105	2046
4	10	1	1181	1259			-2	4140	3848 4164	7	4	1	1090	1355
5	ō	-ð	2056	1939			2	2262	2698		-	-4	3031	2797
		-4	3696	3891	6	1	-7	1333	1369			-6	2445	2332
		-2	5034	5167			-5	1900	1968	7	5	25	1190	1 370
		2	3139	3608			-í	2510	2241		1	-3	1136	1187
5	1	-7	2098 1401	2522 1487			3	1972 787	1526 1186	7	6	-1	1274 2117	2135
-	-	÷	2307	2552	6	2	-ê	1804	1669		-	-ż	2 301	2543
		-3	2603	2513			-5	1084	960	7	7	-3	984	1221
		-2	1445	1091			-4	3933	3465 3589	ß	6	-1	1907	1283
		î	2919	2470			ō	3351	3118		Č	-4	2490	2445
		5	635	693	6	3	-7	1312	1362			-2	1713	1753
5	2	-8	2287	1834			-5	1851	2043	8	1	-5	1219	1244
		-4	4442	4332			-í	2125	2077			-í	1368	1493
		-2 -1	6112 1646	5472			1	1780	1383	8	2	-6	2150	2092
		ō	4628	4592	6	4	1-6	2527	2293			-3	930	829
		4	1711	1927			-2	4 305	4106			-1	1171	687
5	3	-7	1554	1538			2	2286	2613	А	1	-5	1966	1893
		-j	2632	2504	6	1	5 - į	1278	1227	-		-3	1506	1606
		-0	1245	-1026			-3	1929	1523	8	4	-4	2290	1962
		1	2168	1943			-2	1262	871 1470			-2	2204	1991
5	4	-6	2985	2841	,		į	1000	1138	8	5	; - <u>3</u>	962	985
		-2	4054 4315	3925	6		-4	2855	2900	9	¢) -4	1635	1503
		02	3306	3191			-2	2931	3041 2258			-2	1296	1533
		4	1546	2342	6		7 -ž	1666	1405			-3	1282	1181
5	5	-7	1122	1407	6		8 -1 8 -2	2678	2398	9		2 -1	682 1918	1618
		-3	2599	2412	-		o o	1749	1947	ó		, -ż	1647	1636
		-1	1467	1614			-4	3170	2929	9		, -,	1000	930
		3	952	1062			-2	3416	3298					

Sheffield and on the Science Research Council ATLAS computer at Didcot.

Structure determination

Three Patterson projections, obtained by means of the Von Eller photosommateur, proved that the mercury and copper atoms occupy the 2(a) and 2(c) special positions respectively. A three-dimensional difference synthesis computed on the basis of mercury and copper atom positions enabled the preliminary locations of all light atoms to be found. The structure was then refined by four cycles of the least-squares method assuming isotropic thermal motion and with the data uncorrected for absorption. At this stage of refinement the reliability index was R = 0.129. After absorption corrections the refinement process was continued with the anisotropic thermal parameters. Unit weight was used for all observations. The final reliability index for observed reflexions was R = 0.109. Table 1 lists the observed structure amplitudes and calculated structure factors based on the final atomic coordinates given in Table 2. Atomic scattering factors used for mercury and copper were those of Thomas & Umeda (1957) and for oxygen and nitrogen those of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955). The thermal parameters are given in Table 3.

Description and discussion of the structure

The crystal structure contains two water molecules per formula unit. The previously assumed third water molecule is present together with the oxide oxygen in the form of the hydroxide ions. The hydroxide ion, and water molecules are distinguished in the structure according to the possible directions of hydrogen bonds, as well as by considering the distances and angles of hydrogen-bonded oxygen atoms. Consequently, the compound is appropriately defined by the formula $HgCu(OH)_2(NO_3)_2.2H_2O$.

The structure is built up of the octahedra about copper and mercury ions. An idealized general view of the structure is given in Fig.1. The copper ion is centrosymmetrically coordinated by two oxygen atoms from two water molecules (Cu-OH₂, 2.02 Å), two oxygen atoms from two nitrate ions (\tilde{Cu} -ONO₂, 2.14 Å), and two hydroxide ions at a distance of 2.15 Å. The characteristic coordination of mercury is digonal (Grdenić, 1965) with two centrosymmetrically related hydroxo oxygen atoms at 2.30 Å, which is slightly less than the sum of the ionic radii. The effective coordination about mercury is completed by two centrosymmetrically related oxygen atoms from two nitrate ions (Hg-ONO₂, 2.78 Å) as well as by two water-oxygen atoms at 2.54 Å. The octahedra about copper and mercury are linked alternately by having common edges (the hydroxide and water-oxygen atoms) along the c-axis direction as well as common corners (the O(1)) nitrate oxygen atoms) along the *b*-axis direction. The adjacent rows of octahedra are linked together by hydrogen bonds. The water oxygen is linked by one hydrogen bond (HO-H···O(2), 2.88 Å) with the ad-

infinite rows along the c axis are linked together along the b axis in a zigzag manner by means of nitrate-oxygen.

Table 2.	Positional	parameters	in fractional	coordinates	and their	estimated	standard	deviations
----------	------------	------------	---------------	-------------	-----------	-----------	----------	------------

	x/a	у/Ь	z/c	σ_x	σ_y	σ_z
Hg	0.000	0.000	0.000	_		
Cu	0.000	0.000	0.200		_	
O(1)	0.154	0.290	0.044	0.006	0.002	0.011
O(2)	0.399	0.127	0.110	0.006	0.004	0.006
O(3)	0.430	0.364	0.097	0.007	0.006	0.009
O(OH)	-0.172	0.402	0.164	0.007	0.007	0.006
$O(H_2O)$	-0.180	0.101	0.228	0.008	0.006	0.006
N	0.337	0.263	0.092	0.007	0.007	0.007

Table 3. Thermal parameters and their estimated standard deviations

The temperature factor is of the form

	b_{11}	b22	<i>b</i> ₃₃	b23	<i>b</i> ₁₃	b_{12}
Hg	0.0157	0.0078	0.0164	0.0021	0.0119	-0.0107
0	(0.0005)	(0.0003)	(0.0006)	(0.0022)	(0.0009)	(0.0020)
Cu	0.0189	`0·0103´	`0·0193´	- <u>0</u> .0110	`0 ∙0064´	`0 ∙0265´
	(0.0022)	(0.0013)	(0.0023)	(0.0054)	(0.0036)	(0.0049)
O(1)	0.0056	`0·0044 [´]	`0·09 2 9´	0.0151	0.0141	0.0043
	(0.0081)	(0.0050)	(0.0300)	(0.0209)	(0.0251)	(0.0110)
O(2)	0.0237	0.0033	0.0176	0.0027	-0.0248	0.0009
~ /	(0.0110)	(0.0044)	(0.0104)	(0.0117)	(0.0172)	(0.0122)
O(3)	0.0195	0.0134	0.0525	-0.0047	0.0339	0.0108
.,	(0.0115)	(0.0074)	(0.0207)	(0.0221)	(0.0259)	(0.0166)
O(OH)	0.0295	0.0275	0.0076	-0.0061	0.0049	0.0311
	(0.0137)	(0.0110)	(0.0090)	(0.0172)	(0.0181)	(0.0212)
$O(OH_2)$	0.0383	0.0165	0.0123	-0.0008	0.0019	-0.0405
	(0.0158)	(0.0082)	(0.0100)	(0.0155)	(0.0208)	(0.0201)
Ν	0.0143	0.0234	0.0140	0.0205	-0.0325	-0.0330
	(0.0114)	(0.0111)	(0.0122)	(0.0201)	(0.0187)	(0.0198)

jacent nitrate ion and by another (HO-H···OH, 2·71 Å) with the hydroxide oxygen. The hydroxide oxygen is hydrogen-bonded (O-H···O(3), 2·80 Å) to the oxygen atom from the same adjacent nitrate ion. The arrangements of the octahedra are shown in Figs. 2 and 3 projected down the c and a axes respectively. Some interatomic distances and angles together with

Fig. 2. The arrangements of the octahedra about mercury and copper ions projected along the c axis. The hydrogen bonds are shown by dotted lines.

standard deviations (International Tables for X-ray Crystallography, 1959) are listed in Table 4.

The nitrogen-oxygen bonds within the nitrate ion are not of the same length. The N-O(1) bond with the oxygen coordinated to metal ions has a length of 1.27 Å, the N-O(2) bond with the oxygen near mercury (Hg...O(2), 2.95 Å), which is at the same time hydrogen-bonded to the water molecule, is 1.28 Å, while the N-O(3) bond with no coordinated oxygen is 1.12 Å.

The commonest stereochemical coordination of copper in cupric compounds is [4+2] with four short and two long bonds (Orgel & Dunitz, 1957; Dunitz & Orgel, 1960). The coordinations [2+4], [4+1+1], [2+2+2] occur rarely (Nowacki & Scheidegger, 1952; Zemann, 1961; Mani & Ramaseshan, 1961; Wallwork & Addison, 1965). In the present structure the coordination is [2+4] but it is interesting that six copperoxygen distances do not differ to the usual extent. The pale bluish-green colour of the crystals is also well interpreted by the relatively regular coordination about copper (Zemann, 1961).

The author wishes to thank Professor D. Grdenić for suggesting the problem and for helpful discussions, and Professor R. Mason, Dr G. B. Robertson, and Dr N. Bailey from Sheffield University for very great help with computing facilities. The financial support from the Yugoslav Foundation for Scientific Research, Belgrade, is gratefully acknowledged.

References

- ANDRÉ, M. G. (1887). C. R. Acad. Sci. Paris, 104, 431.
- BASSET, H. (1947). Quart. Rev. Chem. Soc. Lond. 1, 246.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- DENK, G. & DEWALD, W. (1951). Z. anorg. allg. Chem. 266, 91.
- DENK, G., LESCHHORN, F. & ROSMER, T. (1962). Z. anorg. allg. Chem. 319, 159.

Table 4. Interatomic distances and angles

The positions are denoted as follows:

No label	x	У	Ζ	(v)	-x, $1-y$, $-z$,
(i)	-x, -	$\frac{1}{2} + y$,	$\frac{1}{2}-z$,	(vi)	$1-x, -\frac{1}{2}+y, \frac{1}{2}+z,$
(ii)	1 + x,	у,	Ζ,	(vii)	-x, -y, -z,
(iii)	х,	$\frac{1}{2} - y, -$	$\frac{1}{2} + z$,	(viii)	1-x, $1-y$, $-z$,
(iv)	-x,	$\frac{1}{2} + y$,	$\frac{1}{2} - z$,		

(a) The coordination about the mercury atom.

		σ			σ
Hg-O(1) Hg-OH ⁱ Hg-OH ₂	2·78 Å 2·30 2·54	0·04 Å 0·04 0·04	O(1)–Hg–OH ⁱ O(1)–Hg–OH ₂ OH ⁱ –Hg–OH ₂	101·3 ° 83·9 75·6	0·3° 0·3 0·3
(b) The coordi	nation about th	ne copper atom.			
		σ			σ
Cu–O(1 ⁱ) Cu–OH ⁱ Cu–OH ₂	2·14 Å 2·15 2·02	0·04 Å 0·04 0·04	$\begin{array}{c} O(1^i)-Cu-OH^i\\ OH^i-Cu-OH_2\\ O(1^i)-Cu-OH_2 \end{array}$	87·6° 91·1 97·6	0·4° 0·5 0·3

			()		
(c) Bond lengths	within the n	itrate ion.			
N-O(1)	1·27 Å	σ 0·07 Å	O(1) = N = O(2)	120.5°	σ 1.4°
N-O(2)	1.28	0.07	O(1) - N - O(3)	115.3	1.4
N-O(3)	1.12	0.07	O(2) - N - O(3)	123.5	1.4
(d) Hydrogen-bo	nded atoms.				
		σ			σ
$O(2) \cdots OH_2^{ii}$	2∙88 Å	0∙08 Å	$O(2) \cdots OH_2^{ii} \cdot OH_2$	∃ ⁱⁱ 87·8°	0.4°
$OH \cdots OH_2$	2.71	0.08			• •
O(3)···OH ⁱⁱ	2.80	0.07			
(e) Distances of a	approximatel	y 3 Å.			
		σ			σ
$Hg \cdots O(2)$	2∙95 Å	0∙05 Å	$O(2) \cdots OH_2^{vii}$	3.01 Å	0.07 Å
$O(1) \cdots OH_2^{iii}$	2.74	0.08	$O(3) \cdots O(3)^{viii}$	3.11	0.08
$O(1) \cdots OH_2^{iv}$	3.13	0.07	$O(3) \cdots OH^{v}$	2.91	0.07
O(1)···OH	2.97	0.07	$O(4) \cdots OH_{2}^{iii}$	2.92	0.06
$O(1) \cdots OH^{v}$	3.10	0.08	$O(4) \cdots OH_2^{iv}$	2.98	0.08

Fig. 3. The structure of HgCu(OH)₂(NO₃)₂. $2H_2O$ projected along the *a* axis.

- DENK, G. & LESCHHORN, F. (1966). Z. anorg. allg. Chem. 342, 25.
- DUNITZ, J. D. & ORGEL, L. E. (1960). Advanc. Inorg. Chem. Radiochem. 2, 1
- FINZI, B. (1913). Gazz. chim. Ital. 43, 709.

 $O(1) \cdots OH^{vi}$

3.00

0.07

- GRDENIĆ, D. (1965). Quart. Rev. Chem. Soc. Lond. 19, 303.
- International Tables for X-ray Crystallography (1959). Vol. II, p. 331. Birmingham: Kynoch Press.
- MAIHLE, M. A. (1902). Ann. Chim. Phys. 27, 362.

MANI, N. V. & RAMASESHAN, S. (1961). Z. Kristallogr. 115, 97.

0.08

- NOWACKI, W. & SCHEIDEGGER, R. (1952). Helv. Chim. Acta, 35, 375.
- ORGEL, L. E. & DUNITZ, J. D. (1957). Nature, Lond. 179, 462.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- WALLWORK, S. C. & ADDISON, W. E. (1965). J. Chem. Soc. p. 2925.
- ZEMAN, J. (1961). Fortschr. Miner. 39, 59.

Table 4 (cont.)